Identification of Candidate Regulatory SNPs by Integrative Analysis for Prostate Cancer Genome Data

Segun Jung Sept 10, 2015 ACM-BCB 2015

Introduction

Cont.

 High-throughput technologies such as microarrays and next-generation sequencing have been extensively used to identify and characterize genomewide gene expression profiles

 Applications of these technologies have been accumulating tons of invaluable experimental data from which genomic abnormalities, particularly related to a disease, can be captured

Project design

Genes can be regulated by Transcription factors **Histon modification Dnase I hypersensitivity Risk stratification** FOXA1 low-risk HOXB13 Clinical data ChIP-seq **Gene expression Disease association RNA-seq SNP SNP** array Noncoding region Protein coding region

Materials and Methods

Cont.

- Regulatory SNP candidate identification
 - TCGA RNA-seq: 497 tumor and 52 matched normal samples
 - TCGA SNP array: 500 samples
 - TCGA clinical data: 369 patients
 - ChIP-seq data for the HOXB13 transcription factor
- Experimental validation
 - Microarray profiling of LNCaP control and HOX13 silencing cells

NIH THE CANCER G National Cancer Inst National Human Ger	I CLAA Home Contact US For the M	
Home Download Data Tools	About the Data Publication Guidelines	
Home > Download Data > Data Matrix		In This Section
Data Matrix		
The Data Matrix only provides the latest revis querying across multiple disease studies. Select initial matrix fiter settings. To view all data	ion of each archive; older revisions are available through bul , click <u>base</u> or click "Apply" without choosing any settings. (Note: I	k download or HTTP access. Also, it does not allow for unfittered matrix is large and can take some time to load.)
Select a disease: PRAD - Prostate ade	nocarcinoma 🗘	
Data Type: DNA Methylation Expression-Protein Protected Mutations RNASeqV2	CenteriPlatform: All BCC3C (IlluminaHISeq_miRNASeq) BCM (Automated Mutation Calling) BI (Automated Mutation Calling)	Access Tier:
Batch Number: All Batch 91 Batch 108	Sample: ID Matches: TCGA	Tumor - matched Tumor - umatched Normal - matched Organ-Spacific Control Cell Line Control
Batch 161 Data Level: Level 1 Level 2 Level 3	Paste Sample List:	Submitted Since (Dato): Imm/dd/yyd 1
Availability: Available Pending Not Available	Upload Sample List: Choose File No file chosen	(Date): [mm/dd/yyy] Only show samples
Preservation: Frozen \$ @ Help		with data available for all columns

Enclose accession of provide company of the start of

https://tcga-data.nci.nih.gov/tcga/

Materials and Methods

5

Results

Results

Gene expression_BCR-free survival (p < 0.1)

Gene expression_BCR-free survival (p < 0.1)

- Do our results include any eQTL?
- Any SNPs within a TF binding motif?
- Explore the top 3 SNP-gene candidates?

16 eQTLs

					Allele frequency			Mean of normalized count			
SNP ID	Gene symbol	P-value	Allele A	Allele B	AA	AB	BB	AA	AB	BB	
rs2742624	UPK3A	2.90E-46	А	G	63	202	229	2894.1	2220.5	786.8	
rs2412106	CHURC1	7.95E-17	А	G	193	212	89	2170.1	2530.2	2768.8	
rs1045270	WDYHV1	2.07E-13	Α	G	210	218	66	722.6	579.8	514.8	
rs3825393	KCTD10	2.51E-11	С	Т	248	186	60	3321.6	3801.5	4391.2	
rs6799720	PLOD2	1.21E-10	G	T	121	247	126	841.7	1257.3	1427.3	
rs11689112	RALB	1.68E-10	А	С	244	202	48	4014.2	3536.1	2920.9	
rs185397	GOT2	3.08E-10	Α	G	65	182	247	7196.4	9322.1	7366	
rs4325349	KRT86	4.42E-06	С	G	58	218	218	25.2	18.4	11.5	
rs7894521	ECHDC3	2.61E-05	G	Т	92	106	296	563.5	844.9	944.4	
rs3746337	PYGB	3.45E-05	C	T	169	218	107	20172.3	18992.3	16455.2	
rs10100297	MMP16	3.38E-04	С	Т	97	211	186	50.2	45.2	35.8	
rs3897474	GPR180	1.00E-03	А	G	200	204	90	582.1	554.1	508.8	
rs11489585	RSBN1L	1.71E-03	Α	G	271	187	36	698.7	778.8	836.3	
rs2283119	ASAH1	8.46E-03	G	Т	151	194	149	11760.6	12907.2	11621.8	
rs3821747	RPL22L1	9.57E-03	Α	G	315	150	29	2279.2	2896	2747.7	
rs847377	AGR3	1.83E-02	C	Т	202	231	61	362.3	429	487.6	

 eQTL signatures from the Genotype-Tissue Expression (GTEx) portal (<u>www.gtexportal.org/home/</u>)

TF binding Motif Search

rs447003, rs4796539, rs339331

	SNP ID	Gene symbol	Gene name	Allele A	Allele B	Allele frequency			Mean of normalized count		
						AA	AB	BB	AA	AB	BB
ĺ	rs447003	KRT6A	Keratin 6A	С	Т	60	235	199	90.4	144	102
	rs4796539	MED31	Mediator Complex Subunit 31	А	G	89	206	199	290	311	295
	rs339331	RFX6	Regulatory Factor X, 6	Т	С	263	186	45	117	69.6	22.6

Gene expression regulation

KRT6A MED31 RFX6

ARTICLES

Nat Genet. 2014 Feb; 46(2):126-35 nature genetics

Cont.

A prostate cancer susceptibility allele at 6q22 increases *RFX6* expression by modulating HOXB13 chromatin binding

Qilai Huang^{1,2,11}, Thomas Whitington^{3,4,11}, Ping Gao^{1,2}, Johan F Lindberg⁴, Yuehong Yang^{1,2}, Jielin Sun⁵, Marja-Ritta Väisänen⁶, Robert Szulkin⁴, Matti Annala², Jian Yan³, Lars A Egevad⁸, Kai Zhang^{1,2}, Ruizhu Lin^{1,2}, Arttu Jolma^{3,9}, Matti Nykter⁷, Aki Manninen^{1,2}, Fredrik Wiklund⁴, Markku H Vaarala^{6,10}, Tapio Visakorpi⁷, Jianteng Xu³, Jussi Taipale^{3,9} & Gong-Hong Wel^{1,2}

Genome-wide association studies have identified thousands of SNPs associated with predisposition to various diseases, including prostate cancer. However, the mechanistic roles of these SNPs remain poorly defined, particularly for noncoding polymorphisms. Here we find that the prostate cancer site/associated SNP rs339331 at 6q22 lies within a functional HOXB13 binding site. The risk-associated allele at rs339331 increases binding of HOXB13 to a transcriptional enhancer, conferring allele-specific upregulation of the rs339331-associated gene *RYAG*. Suppression of *RYAG* diminishes prostate cancer cell proliferation, migration and invasion. Clinical data indicate that *RYAG* upregulation in human prostate cancers correlates with tumor progression, metastasis and risk of biochemical relapse. Finally, we observe a significant association between the risk-

Top 3 Candidates Analysis

Cont.

- Aurora B is regulated by acetylation/deacetylation during mitosis in prostate cancer cells (FASEB J. 2012; 26(10):4057-67)
- Gene expression of Aurora kinases in prostate cancer and nodular hyperplasia tissues (<u>Med Princ Pract. 2013</u>; <u>22(2):138-43</u>)
- Enhanced radiosensitivity of androgen-resistant prostate cancer: AZD1152-mediated Aurora kinase B inhibition (Radiat Res. 2011; 175(4):444-51)

Top 3 Candidates Analysis

Cont.

Experimental Validation

- LNCaP-pGIPZ and LNCaP-shHOXB13 are the control and HOXB13 repressed cell, respectively.
- Knockout of HOXB13 diminishes AURKB gene expression level by about 2-fold.

Future work

- Different TFs for ChIP-seq
- Intersecting peak calls with other signals (e.g., H3K27ac, Dnase I hypersensitivity) to improve potential regulatory regions
- Incorporate external PCa dataset for validation
- Apply this scheme to other disease

Conclusions

- We presented an *in silico* methodology in conjunction with an experimental validation for identifying candidate regulatory SNPs located in the TF-bound noncoding regions
- We identified a novel rSNP and its target gene pair (rs1476161, AURKB) as a potential biomarker in PCa
- The method is not only suitable for prostate cancer, but for any other cancer types.

Acknowledgements

Dr. Ramana V. Davuluri (PI)

Dr. Hongjian Jin

Northwestern University **NUCATS**Clinical and Translational Sciences Institute

