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INTRODUCTION

Prostate cancer (PCa) is the second most common 
cause of cancer deaths in American men [1]. It is estimated 
that 220,800 men will be diagnosed and 27,540 men will die 
of PCa in 2015. Despite its prevalence and lethality, there are 
still many clinical challenges associated with PCa diagnosis 
and treatment. Single nucleotide polymorphisms (SNPs) 
are known to underlie differences in our susceptibility to 
diseases, and it has also attracted tremendous interest as 
potential biomarkers for PCa diagnostics and risk prediction 
in recent years. To date, common genetic variants in more 
than 70 genomic loci have been clearly associated to PCa by 
recent genome-wide association studies (GWAS), explaining 
approximately 30% of the familial risk for this disease [2]. 
Since the majority of these loci are situated within intergenic 

or intronic regions, a mechanistic understanding of how they 
contribute to phenotypes is lacking. Recent understanding 
of the control of gene expression have emerged as a key 
tool for connecting DNA sequence variation to phenotypes 
[3]. It is now clear that regulatory variants can influence the 
individual steps of gene expression including transcription 
factor binding [4, 5], chromatin accessibility [6], histone 
modification [7], DNA methylation [8–10], alternative 
splicing [11] and so on. 

With the advent of high-throughput genomic 
technologies, genome wide mapping of functional 
elements became easily feasible. For example, DNase-
seq [12] and FAIRE-seq [13] allow us to define DNase I 
hypersensitive sites (DHS), nucleosome-free regions such 
as regulatory promoters and enhancers. While chromatin 
immunoprecipitation assays followed by sequencing 
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ABSTRACT
Prostate cancer (PCa) is the second most common solid tumor for cancer 

related deaths in American men. Genome wide association studies (GWAS) have 
identified single nucleotide polymorphisms (SNPs) associated with the increased risk 
of PCa. Because most of the susceptibility SNPs are located in noncoding regions, 
little is known about their functional mechanisms. We hypothesize that functional 
SNPs reside in cell type-specific regulatory elements that mediate the binding of 
critical transcription factors (TFs), which in turn result in changes in target gene 
expression.  Using PCa-specific functional genomics data, here we identify 38 
regulatory candidate SNPs and their target genes in PCa. Through risk analysis by 
incorporating gene expression and clinical data, we identify 6 target genes (ZG16B, 
ANKRD5, RERE, FAM96B, NAALADL2 and GTPBP10) as significant predictors of PCa 
biochemical recurrence. In addition, 5 SNPs (rs2659051, rs10936845, rs9925556, 
rs6057110 and rs2742624) are selected for experimental validation using Chromatin 
immunoprecipitation (ChIP), dual-luciferase reporter assay in LNCaP cells, showing 
allele-specific enhancer activity. Furthermore, we delete the rs2742624-containing 
region using CRISPR/Cas9 genome editing and observe the drastic downregulation of 
its target gene UPK3A. Taken together, our results illustrate that this new methodology 
can be applied to identify regulatory SNPs and their target genes that likely impact 
PCa risk. We suggest that similar studies can be performed to characterize regulatory 
variants in other diseases.
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(ChIP- seq) can be used to generate high-resolution profiles 
of histone modifications and transcription factor binding 
sites (TFBS)[14]. H3K4me1/ H3K4me3 are associated with 
enhancer/promoter positions respectively and H3K27ac 
reflects active utilization of these regions [15, 16]. Recent 
ChIP-seq studies have carefully identified enhancer elements 
bound by prostate-specific transcription factors such as 
AR, FOXA1, NKX3-1, GATA2 and HOXB13, revealing 
the cooperative regulatory network that controls prostate 
gene expression [17–23]. In addition, The Cancer Genome 
Atlas (TCGA) has archived a comprehensive molecular 
characterization of the genetic contributions to PCa. Multiple 
data types including SNP array and RNA-seq, performed on 
the same set of patient samples, have been available. These 
datasets offer unprecedented opportunities for identifying 
sequence variants that may impact factor binding and gene 
regulation and thus contribute to this disease.

In addition, various approaches have been developed 
to identify sequence variants that likely play important 
biological roles. Gene expression quantitative trait loci 
(eQTLs) have been widely used to identify the genetic 
variants impacting gene expression levels [24]. The 
RegulomeDB tool annotates SNPs with a combination of 
DHS, TFBS predictions, eQTLs and enhancer information 
[25]. HaploReg explores annotations of non-coding 
variants through chromatin states, motif instances and 
eQTLs from the Genotype-Tissue Expression (GTEx) 
browser [26]. FunciSNP incorporated ENCODE datasets 
to annotate putative functional variants in GWAS analysis, 
providing a comprehensive annotation of the 77 known 
PCa-risk loci [27, 28]. However, these methods utilize 
all ENCODE data or all known TF motifs. In reality, 
distinct cell types are maintained largely through the cell-
type specific binding of TFs, and the presence of a motif 
does not necessarily imply a real TF binding in a different 
cell type. And eQTL data for prostate is unavailable in 
the GTEx project [29]. However, both GWAS and eQTL 
point to regions of linkage disequilibrium (LD) rather than 
to individual SNPs. It’s therefore necessary to identify 
individual SNPs that overlap regulatory elements.

Using epigenetic marks and open chromatin regions 
obtained from PCa cells, we identify SNPs that are 
located in prostate-specific regulatory elements. Through 
eQTL and motif affinity analysis, we capture a subset of 
regulatory SNPs that map within a canonical TF binding 
motif and potentially affect TF genomic occupancy. Using 
chromatin immunoprecipitation (ChIP) and dual-luciferase 
reporter assays, we tested several candidate SNPs and 
confirmed allele-specific TF binding and enhancer activity. 
Furthermore we deleted one polymorphic enhancer by 
CRISPR/Cas9 genome editing technology, resulting in 
altered expression of its target gene. Our studies suggest 
that this methodology could be used to systematically 
identify regulatory SNPs in a tissue/disease specific 
manner and precise deletion of individual enhancers could 
help to determine their functional significance.

RESULTS

Identification of regulatory SNPs and associated 
genes in PCa

The flow diagram presented in Figure 1A depicts the 
strategy of the systematic processing to acquire, integrate, 
filter and analyze existing data to identify putative regulatory 
SNPs in PCa. To obtain PCa-specific regulatory regions, we 
first combined DNase I hypersensitivity sites and H3K27ac 
ChIP-seq peaks in PCa LNCaP cells, resulting in over one 
million regions that represent accessible chromatin regions 
or active enhancers. Then we retrieved ChIP-seq data sets 
for AR, FOXA1, GATA2 and NKX3-1 from LNCaP cells 
and HOXB13 from VCaP cells, generating a set of TF 
binding regions (n = 206,480) with one or more TF binding. 
Overlapping these TF binding sites with the open chromatin 
or active enhancer regions, we generated a non-redundant 
collection of PCa-specific regulatory regions (n = 99,135). 
Through overlapping with genomic positions of SNPs in 
Affymetrix Genome-Wide SNP Array 6.0 platform used in 
TCGA PCa project, we found that 7,197 SNPs are located in 
these PCa-specific regulatory regions.

Next, we analyzed these SNPs to identify potential 
eQTLs and their target genes using RNA-seq and SNP 
array data available in the TCGA PCa project. Our 
previous study and others found that genes located within 
25 kb of an AR binding site were the most significantly 
enriched for androgen-regulated genes in PCa; larger 
genomic windows could include a greater proportion of 
false positives [18, 33]. Moreover it’s been reported that 
FOXA1, GATA2, NKX3-1 and HOXB13 can interact with 
AR and play essential roles in facilitating AR genomic 
binding and androgen-responsive gene expression [20, 
34–36]. The data from the ENCODE consortium estimated 
that about 47% of the distal regulatory elements have 
interactions with the nearest expressed transcription start 
site (TSS) [37]. These analyses suggested that examining 
the nearby genes within ± 25 kb of SNPs may produce 
a relatively short but reasonable list of genes potentially 
regulated by eQTLs within PCa-specific enhancers. 
Through the eQTL analysis, we identified 309 SNP-gene 
pairs where each SNP is significantly associated with its 
nearby gene expression. 

To focus on regulatory SNPs that affect TF binding 
affinity and mediate gene regulation, we particularly 
excluded SNPs that merely fall within TF binding 
regions, but locate outside of a canonical DNA binding 
motif. According to recent advances of gene regulation, 
only a few of master TFs dominate control of tissue-
specific gene expression programs [38]. Furthermore 
differential TF binding could direct differential histone 
modifications, DNA methylation and mRNA levels [10]. 
Thus sequence variation in these tissue-specific enhancers 
could misregulate gene expression tightly linked to disease 
[3]. Specifically, we performed a motif analysis using the 
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selected binding motifs of AR FOXA1, GATA2, NKX3-
1 or HOXB13. We found 38 SNPs that can cause motif 
changes for these 5 TFs. 84% of regulatory SNPs (32 of 
38) reside at non-coding/distal regulatory region linked to 
a nearby target gene (Supplementary Table S1). Only 6 
regulatory SNPs are located in the gene promoter region 
that refers to -2kb upstream to 2kb downstream of the 
TSS [39]. Interestingly, one PCa GWAS SNP rs339331, 
known to influence its target gene (RFX6) expression 
by modulating HOXB13 chromatin binding [21], was 
rediscovered by our analysis. 8 of 38 SNP-gene pairs were 
identified as eQTLs in the Genotype-Tissue Expression 
(GTEx) database (www.gtexportal.org), which were 
considered as genetic changes associated with common 

human diseases [29]. For example, the gene expression of 
UPK3A, a promising urinary biomarker for bladder cancer 
[40], is highly correlated with SNP rs2742624. 

Expression analysis of regulatory SNP-associated 
genes

We next examined the transcription level of SNP-
associated genes using RNA-seq data for 497 PCa samples 
and 52 normal samples from the TCGA data to determine 
whether any of these 38 genes are differentially expressed 
(absolute fold change > 1.5-fold change and P-value < 
0.01). Seven genes display robust changes including FMO4, 
EFHD1, MLPH, GIPC2, NAALADL2, KLK15 and LYVE1 

Figure 1: Identification of potential regulatory SNPs for PCa. (A) Resources, logical workflow, computational processing 
steps are summarized. First, putative regulatory regions were defined as those bound by one or more TFs and within open chromatin or 
active histone marks(H3K27ac) in PCa cells (Supplementary Table S4) . Considering availability of SNP genotype data, we only chose 
SNPs that are included in Affymetrix Genome-Wide SNP Array 6.0 platform in TCGA-PRAD studies and reside in our regulatory regions 
(Supplementary Table S5). The numbers of regulatory SNPs identified by eQTL and further motif analysis are indicated and  the lists of 
candidates are shown in Supplementary Table S6 and Supplementary Table S1 respectively. Furthermore, we performed risk analysis based 
on gene expression. And several candidate SNPs can be selected for experimental validation. (B) shown key steps and a representation of 
SNP-gene candidates in our analysis. Rs9925556, located in a DHS and H3K272ac marked region, is bound by FOXA1 and GATA2. This 
SNP is highly associated the expression level of ZG16B gene. Motif analysis revealed that rs9925556 dramatically affects the FOXA1 
binding motif. In TCGA PCa dataset, patients with low ZG16B transcriptional activity had shorter BCR-free survival.



Oncotarget4www.impactjournals.com/oncotarget

(Supplementary Table S2). Of these, EFHD1, MLPH, 
NAALADL2 and KLK15 are significantly upregulated 
while others are downregulated in prostate tumors compared 
to normal samples. 

Clinical impact of regulatory SNP-associated 
genes on prostate cancer progression

To assess the clinical significance of these SNP-
regulated genes, we performed Kaplan-Meier analysis 
and examined the association of gene expression with 
clinical variables in a collection of 295 PCa samples 
from TCGA. We found that the expression of 6 genes—
ZG16B, ANKEF1, RERE, FAM96B, NAALADL2 and 
GTPBP10—showed a strong correlation with frequency 
of biochemical recurrence (P < 0.05). For instance, PCa 
patients with higher gene expression levels of ZG16B had 
significantly higher risk of biochemical relapse than those 
patients with lower levels of ZG16B expression (P = 0.03). 
Except for rs339331, our analysis identified additional 12 
potential PCa-related regulatory SNPs from which 7 SNPs 
are associated with differentially expressed genes in tumor 
vs. normal samples while 6 SNPs are involved in risks of 
biochemical recurrence (Supplementary Table S1 and S2). 
For example, ZG16B, known to involve in metastasis in 
colorectal cancer [41], is potentially affected by rs9925556, 
and lower expression level of ZG16B that is correlated 
with shorter BCR-free survival in PCa (Figure 1.B). In 
addition, NAALADL2, overexpressed in colon cancer and 
PCa, has been reported to play significant roles in cancer 
development and progression [42] . We also observed the 
upregulation of NAALADL2 in PCa comparing to normal 
or benign samples and patients with high expression level 
of NAALADL2 correlated with shorter BCR-free survival 
(Supplementary Figure S1). These results support that 
our method is feasible in identifying causative genes and 
corresponding regulatory SNPs on PCa risk.

Effect of selected regulatory SNPs on transcription 
factor recruitment and Enhancer activity

To confirm that regulatory SNP regions are located in 
functional enhancers with active histone marks and prostatic 
TF binding, several genomic regions including rs2659051, 
rs10936845, rs9925556, rs6057110 and rs2742624 were 
selected for experimental validation. We performed ChIP-
qPCR assays with AR, FOXA1, GATA2, HOXB13 and 
H3K27ac antibodies or normal IgG as a control. ChIP–
qPCR analysis of the positive control gene KLK3 or PSA 
showed that excessive H3K27ac marker and TFs binding 
in KLK3 enhancer (Figure 2A, 2G). Overall, all tested 
SNP regions showed strong enrichment of H3K27ac, at 
a similar or higher level compared to the KLK3 enhancer 
(Figure 2A), indicating higher levels of DNA accessibility. 
Interestingly, our data substantiated striking co-occupancy 
of 4 TFs in these regions (Figure 2B–2F), suggesting their 
significance in transcriptional regulation. Alterations to 

these regulatory regions might result in the disruption of 
gene expression. Indeed, we observed the strong association 
between the gene expression level and SNP genotypes 
(Figures 3A and 3D) and TF binding affinities to DNA 
motifs were severely affected by SNPs (Figure 3B and 3E). 

To further test our hypothesis and to assess whether 
these enhancers cause allele–specific enhancer activity, we 
cloned ~160 bp enhancer regions containing individual 
allele of three SNPs including rs9925556, rs6057110 
and rs2742624. Indeed, our luciferase reporter assay data 
showed dramatic allelic difference of enhancer activity. The 
enhancer regions with the C allele at rs6057110, A allele 
at rs2742624 and T allele rs9925556 showed significantly 
higher (1.5~3 folds) enhancer activity to drive luciferase 
gene expression in prostate cancer cells, compared to 
those with another allele respectively (Figure 3C, 3F–3H). 
These results supported that these regions have allele-
dependent enhancer activity, which is highly consistent 
with genotype-associated gene expression level. Next, we 
further tested whether the allele-specific enhancer activity 
is resulted from allele imbalance of TF binding affinity. We 
chose the rs2742624-containing region because the SNP is 
heterozygous in LNCaP cells. Indeed, our results showed 
that the A allele was enriched in anti-GATA2 ChIP-ed DNA 
fragments compared to input genomic DNA by standard 
PCR followed by Sanger sequencing analysis (Figure 3G). 
Thus, GATA2 has binding preference for the A allele of 
rs2742624, in harmony with higher DNA-binding affinity 
compared to the G allele (Figure 3E). These observations 
may explain not only higher luciferase gene expression 
driven by this A allele-containing enhancer (Figure 3F) but 
also higher UPK3A expression levels in PCa patients with 
A/A genotype of this SNP (Figure 3D) . Taken together, our 
results suggested that allele-dependent enhancer activities 
of these regions are modulated through altering a TF motif 
/DNA binding affinity.

The effect of enhancer deletion on target gene 
expression

Our analyses provide a list of SNPs in PCa-specific 
functional enhancers that potentially regulate gene 
expression or their targets. Although luciferase assays can 
be used to test functional significance of SNP on enhancer 
activity in vitro, the direct evidences that can link enhancer 
to its specific target gene remain missing. With the advent 
of CRISP/cas9 genome editing technology [43, 44], 
now it is possible to delete an enhancer region from the 
genome and determine changes in gene expression in vivo. 
To examine whether rs2742624-containing enhancer is 
responsible for UPK3A expression in PCa, we designed a 
pair of guide RNAs and performed CRISPR/cas9 to delete 
the target region (Figure 4A–4C) . qRT-PCR expression 
analysis suggested that deletion of the rs2742624 locus 
resulted in diminished UPK3A level in LNCaP cells, 
confirming the regulatory role of rs2742624 in UPK3A 
gene expression (Figure 4D).



Oncotarget5www.impactjournals.com/oncotarget

Figure 2: Experimental validation of selected five loci associated with H3K27ac and transcription factor binding. 
H3K27ac, FOXA1, AR, HOXB13,GATA2 ChIP experiments were performed in LNCaP cells and followed by ChIP–qPCR analysis 
of H3K27ac (A) and chromatin occupancy of TFs on 5 selected target regions including rs6057110 (B) rs2742624 (C) rs2659051 
(D) rs10936845 (E) and rs9925556 (F). And KLK3 enhancer locus was tested as a positive control for ChIP-qPCRs.
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Figure 3: Allele-specific differences in enhancer activity and GATA2 chromatin binding at the selected loci. 
(A) The expression of ANKEF1 RNA is shown for samples having homozygous or heterozygous alleles for regulatory SNP rs6057110. 
Sample size is listed in each genotype. PCa datasets of RNA-seq and SNP array were from TCGA. G allele disrupts a GATA2 motif (B) 
and luciferase reporter assay showed decreased enhancer activity of the G allele at rs6057110 relative to the C allele in LNCaP cells 
(C) (D) The expression of UPK3A RNA is shown for patients having homozygous or heterozygous alleles for regulatory SNP rs2742624. 
G allele disrupts a GATA2 motif (E) and decreases enhancer activity compared to the A allele of SNP rs2742624 (F) (G) GATA2 ChIP 
was followed by PCR amplification and Sanger sequencing of rs2742624 region. Input sample from ChIP assay was used as a control. 
Note that rs2742624 is heterozygous in LNCaP cells and a reverse primer (rs2742624_gt_R1, see supplementary Table S3) was used for 
sequencing. The specific peaks of rs2742624 are highlighted with a red box. Electropherograms showed that GATA2 favors binding to T 
(reverse strand), corresponding to A allele in reference genomic sequence. (H) The enhancer activity for C allele and T allele of rs992556 
was determined by luciferase reporter assay.

Figure 4: CRISPR/cas9 -mediated genomic deletion of rs2742624 locus diminishes UPK3A gene expression. (A) The 
scheme for deletion of rs2742624-containing enhancer by CRISPR/cas9 technology. The guide RNAs were shown in red and protospacer 
adjacent motifs(PAM) were underlined. (B–C). PCR genotyping (C) and Sanger sequencing (B) to confirm the biallelic deletion of the 
rs2742624 locus (168bp) in the positive clone. (D) The expression of UPK3A gene was diminished upon deletion of the rs2742624 locus 
by RT-qPCR assay, indicating that UPK3A gene is a direct target of the polymorphic enhancer.
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DISSCUSSION

Although numerous GWAS studies have been 
conducted in PCa (reviewed by Broeck et al. [45]), the 
SNPs detected through GWAS studies are mostly limited 
to few “Tag SNPs” [46], excluding many other SNPs 
which are in the LD. These tag SNPs are not necessarily 
the causative SNPs associated with phenotype. Instead 
of focusing on GWAS SNPs, we analyzed all individual 
SNPs resided in prostate-specific regulatory regions to 
highlight functional variants that modulate TF binding and 
subsequently affect target gene expression in PCa. Our work 
thus is complementary to previous GWAS studies. It is 
also important to note that we focused on active chromatin 
regions with occupancy of at least one of five prostatic TFs 
including AR [47], GATA2 [22, 23, 48], FOXA1 [19, 32, 
33, 49, 50], HOXB13[36] and NKX3-1[20]. Since emerging 
evidence supported that these TFs are key regulators 
collaboratively controlling gene expression programs during 
prostate development, tumorigenesis and/or progression 
[51], we reasoned that genetic variants located in these 
regulatory regions can have impact on disease phenotype 
through affecting expression level of critical target genes. In 
fact, we identified 38 regulatory SNPs and their target genes 
in PCa through integrative analysis of genomic, epigenomic 
and transcriptomic data. Of these SNP-associated genes, 6 
have a strong association with biochemical recurrence and 
7 are differentially expressed in PCa compared to normal 
samples. Furthermore, we experimentally confirmed that 
tested regulatory SNPs influence allelic imbalance of TF 
binding and allele-dependent enhancer activity, elucidating 
their mechanistic role in affecting gene expression. 
However, it needs to be noted that future studies need 
to be done to determine functional importance of these 
interesting candidate genes in PCa. It is plausible that 
other features such as somatic copy-number changes, DNA 
methylation status and enhancer long-range interactions 
may be integrated to prioritize putative regulatory SNPs 
and associated genes, which will be interesting directions 
for our future studies. Nevertheless, we developed a feasible 
method to identify significant SNPs and their target genes 
using publicly available large-scale data sets, bioinformatics 
tools and experimental validation. The similar procedure 
could be further tailored to help the identification and 
validation of functional variants in other diseases.

MATERIALS AND METHODS

Publicly available datasets 

We used PCa datasets of chromatin features to 
identify putative regulatory regions. Sequence reads of 
DNase-seq (GSM816634), ChIP-seq including H3K27ac 
(GSM1249448), AR (GSM916521), FOXA1 (GSM916523), 
GATA2 (GSM1600544) and NKX3-1 (GSE28264) were 
downloaded from the Gene Expression Omnibus database. 
HOXB13 (PRJEB4865) ChIP-seq data were obtained from 

the European Nucleotide Archive (http://www.ebi.ac.uk/
ena). Sequence reads were aligned to the Human Reference 
Genome (assembly hg19) using Burrows-Wheeler 
Alignment (BWA) Tool[30]. Peak calling was performed 
using HOMER (Hypergeometric Optimization of Motif 
EnRichment) suite (http://homer.salk.edu/homer/) or MACS 
[31]. RNA-seq and SNP array of prostate adenocarcinoma 
were downloaded from the TCGA data portal (https://tcga-
data.nci.nih.gov/tcga/).These data include 497 prostate 
tumor and 52 matched normal samples for RNA-seq and 
500 samples for SNP array. The TCGA level3 RNASeqV2 
data were generated on the Illumina HiSeq platform, and 
mapped with the RSEM algorithm and normalized. Genes 
whose RNA-seq raw counts were all zero across patient 
samples were removed from list. Affymetrix Genome-wide 
Human SNP array 6.0 data were processed mainly using the 
corrected robust linear mixture model (crlmm) algorithm for 
data normalization and genotype calls. 

Analysis of association between SNPs and 
nearby gene expression (eQTL)

To identify the SNPs that affect gene expression, 
RNA-seq and SNP array data from each individual of 494 
PCa patients in TCGA data set were collected for analysis. 
For each SNP, we generated a list of its nearby genes within 
a 50kb interval (25 kb on either side) using the bedtools and 
gene annotation file (GRCh37) from Ensembl (http://useast.
ensembl.org/Homo_sapiens/). Individuals are grouped 
according to the allele they carry and expression data of 
nearby genes are extracted from each individual accordingly. 
We then applied the Analysis of Variance (ANOVA) test to 
assess the statistical significance of association between 
SNP genotypes and expression levels. 

Analysis of SNP-mediated effect on transcription 
factor binding affinity

The position weight matrix (PWM) models and 
detection thresholds of transcription factor binding 
motif for AR, GATA2, FOXA1, HOXB13 and AR, 
were retrieved from HOMER package. We obtained the 
genomic sequence +/−20 bp of the given SNP position 
and then calculated the binding affinity score for each 
subsequence overlapping the SNP position in either strand. 
Both the allele-specific scores and between-allele score 
differences are calculated to evaluate whether the SNP 
allele impacts the match to PWM significantly, either by 
disrupting a subsequence with good binding affinity score 
or creating a subsequence with better score. 

 Analysis of association between gene expression 
and risk of biochemical recurrence

We used a collection of 295 prostate adenocarcinoma 
samples and 52 normal samples with both RNA-seq 
gene expression and clinical variables from the TCGA 
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dataset. The gene expression levels are defined as z-scores 
= (x−μ)/σ, where x is the tumor samples, μ is the mean 
of normal samples, and σ is the standard deviation of 
normal samples. Therefore, the scores above and below 
zero indicate higher and lower expression, respectively. 
To stratify the tumors into those with high and low gene 
expression, we first separated them into positive and 
negative z-scores. We then ranked the tumors based on 
the z-score in each group. Tumors with high and low 
gene expression are defined as those in the highest and 
lowest 75% of tumors with positive and negative z-scores, 
respectively. Since z-scores close to zero are uninformative 
and thus not useful in this analysis, we excluded the 
corresponding tumor samples accordingly. Lastly, we 
performed Kaplan-Meier analysis using this stratification. 
Relevant clinical variables, such as relapsed time and status 
of biochemical recurrence, were extracted from TCGA 
clinical data file.

Cell lines and antibodies

LNCaP cells were obtained from American Type 
Culture Collection and passaged in our laboratory for 
less than 6 months after resuscitation. LNCaP cells are 
maintained in RMPI 1640 culture medium supplemented 
with 10% fetal bovine serum in a 37°C humidified chamber 
supplemented with 5% CO2. Antibodies used in this study 
include anti- H3K27ac (39133) from Active Motif, anti-
FOXA1 (ab23738) from Abcam, anti-AR (sc-815X), anti-
GATA2(sc-9008) and anti-HOXB13(sc-66923) from Santa 
Cruz

Plasmids and dual luciferase assay

pGL4.26 [luc2/minP/Hygro] vector (Promega) 
was digested with EcoRV and then blunt-end plasmid 
DNA was purified and added 3′- T overhang using Taq 
DNA polymerase to generate pGL4.26-T, which allows 
direct and high-efficiency TA cloning of PCR products. 
The selected enhancer regions were amplified by 
polymerase chain reaction (PCR) using primers listed 
in Supplementary Table S3 from LNCaP or DU145 
genomic DNA using High Fidelity AccuPrime Tag DNA 
polymerase (Invitrogen) and subcloned into pGL4.26-T, 
immediately upstream of the minimal promoter (minP) 
and the luciferase reporter gene. The QuikChange II Site-
Directed Mutagenesis kit (Agilent Technologies) was used 
to obtain either the reference or alternative allele at the 
SNP site. All clones were confirmed by sequencing. All 
plasmids were purified from DH5a bacterial cells using the 
PureYield™ Plasmid Midiprep system (Promega). LNCaP 
cells were transfected with reporter plasmids along with 
constitutively active pRL-TK Renilla luciferase plasmid 
(Promega) using X-tremeGENE HP DNA Transfection 
Reagent (Roche). At 48 hours after transfection, the cells 
were lysed with the 1X passive lysis buffer and firefly 
& Renilla luciferase activities were measured using the 

Dual-Luciferase Reporter Assay System (Promega) and 
GloMax®−20/20 Single Tube Luminometer (Promega) 
according to the manufacturer’s protocols.

ChIP 

ChIP from LNCaP cells was carried out as described 
previously [32]. Briefly, cultured cells were crosslinked 
with 1% formaledehyde for 10 min, and the crosslinking 
was inactivated by 0.125 M glycine for 5 min at room 
temperature (RT). Cells were then rinsed with cold 1X PBS 
twice. The following steps were performed at 4°C: cell 
pellets were resuspended and incubated in cell lysis buffer 
+ 10 ul/ml PMSF and protease inhibitor (Roche) for 10 min; 
nuclei pellets were spinned down at 5,000 rpm for 5 min, 
resuspended in nuclear lysis buffer, and then incubated for 
another 10 min; chromatin was sonicated to an average 
length of 500 bp and then centrifuged at 14,000 rmp for 
10 min to remove the debris; supernatants containing 
chromatin fragments were incubated with agarose/protein 
A or G beads (Upstate) for 15 min and centrifuged at 
5,000 rpm for 5 min to reduce nonspecific binding. To 
immunoprecipitate protein/chromatin complexes, the 
supernatants were incubated with 3–5 ug of antibody 
overnight, and then added 50 ul of agarose/protein A or G 
beads and incubated for 1.5 hour. Beads were washed twice 
with 1X dialysis buffer and four times with IP wash buffer. 
The antibody /protein/DNA complexes were eluted with 
150 ul IP elution buffer twice. To reverse the crosslinks, the 
complexes were incubated in elution buffer + 10 ug RNase 
A and 0.3 M NaCl at 67°C for 4 hours. DNA/proteins were 
precipitated with ethanol, air-dried, and then dissolved in 
100 ul of TE. Proteins were then digested by proteinase K 
at 45°C for 1 hour, and DNA was purified with QIAGEN 
PCR column and eluted with 30 ul EB.

ChIP-qPCR analysis 

All primers were designed using Primer 3 (http://
biotools.umassmed.edu/bioapps/primer3_www.cgi), and 
synthesized by Integrated DNA Technologies 
(Supplementary Table S3). SYBR Green based 
quantitative real-time PCR was performed using GoTaq 
qPCR MasterMix (Promega) using a StepOnePlus Real-
Time PCR System (Applied Biosystems). ChIP-qPCR 
enrichment analysis were performed by Comparative Ct 
method and normalization to input, that is, enrichment 
over input=2(–ΔCt), where ΔCt=Ctsample-Ctinput.

Enhancer deletion

CRISPR/Cas9 target sites were identified using the 
E-CRISPR design tool available at www.e-crisp.org/E-
CRISP/, and targets were chosen with the best specificity. 
To create genomic deletions across the enhancer region 
of approximately 177–193-bp, two guides RNA were 
designed to the target sequences Guide RNAs were 
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cloned into BbsI sites of pX458 vector (Addgene plasmid 
48138), which encodes both the guide RNA, mammalian 
Cas9 enzyme with 2A-EGFP. 2 µg total px458 vector 
(encoding 1 µg each of guides#1 and guide#2) was 
introduced into LNCaP cells by Neon electroporation 
system (Life Technologies). Cells were resuspended in 
500 uL of RPMI/10% FBS and incubated at 37°C with 
5% CO2 for 48 hours. BIO-RAD S3™ Cell Sorter was 
used to capture the cells having high green fluorescent 
protein signals and then colonies were grown from single 
cells. Complete deletion of all alleles for a target locus was 
confirmed by PCR using primers flanking the enhancer. 
RT-qPCR analysis was performed in triplicate, comparing 
the deleted cells to parental LNCaP cells.
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