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ABSTRACT 
Genome-wide association studies (GWAS) have identified 
numerous single nucleotide polymorphisms (SNPs), also known 
as generic variants, associated with disease susceptibility. Prostate 
cancer (PCa) is a highly heritable disease. GWAS studies have so 
far reported more than 70 SNPs that are associated with PCa risk.  
However, most of these SNPs are located in the noncoding 
genomic regions that little are known about their functional roles. 
Here we describe an informatics system that performs an 
integrative analysis of ChIP-seq, RNA-seq, SNP array and clinical 
data for identifying candidate regulatory SNPs (rSNPs) that could 
alter transcription factor (TF) binding sites and neighboring gene 
regulation. By applying the informatics framework on HOXB13 
TF in PCa, we identified 213 rSNPs that include a recently 
discovered rSNP (rs339331) and identified a novel candidate 
rSNP (rs1476161) associated with the PCa risk. We confirmed 
rs1476161 by performing the HOXB13 knockout experiment. The 
expression level the target gene, AURKB, was decreased by about 
2-fold in HOXB13-silencing cells compared to the control cells. 
This indicates the involvement of HOXB13 in altering AURKB 
gene expression, suggesting a critical role of rs1476161 in allele-
specific gene regulation. Taken together, the results demonstrate 
the feasibility of our system in searching for candidate rSNPs 
associated with PCa risk. 
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1. INTRODUCTION 
Prostate cancer (PCa) is the second most common cause of cancer 
mortality among men in the Western countries [1]. This is one of 
the most heritable diseases, and the hereditary genetic factors 
contribute significantly to its susceptibility [2]. To date, over 70 
single-nucleotide polymorphisms (SNPs) have been identified to 
be associated with PCa predisposition by genome-wide 
association studies (GWAS), accounting for ~30% of the familial 
risk in PCa [3]. However, little is known about the molecular 
basis involving these susceptibility SNPs. 

SNPs, associated with disease, in coding region are largely easy to 
understand their functional roles. However, deciphering the 
functional implication of SNPs, located outside of coding regions, 
remains a challenge. Such disease-associated SNPs in noncoding 
regions are called regulatory SNPs (rSNPs) because they can alter 
the binding affinity of transcription factors (TFs) to the DNA 
sequence in the regulatory region that modulate the gene 
expression level, leading to disease phenotypes.  

Most of the rSNPs are located in intronic and intergenic 
noncoding genomic regions and have long been studied to 
decipher their functional roles in gene expression and 
genome/chromatin organization [4, 5]. To aid in the study of 
rSNPs, several computational approaches have contributed to the 
annotation of noncoding variants [6-11]. Recent emerging 
evidence suggests that these rSNPs are the key players in gene 
regulation programs by modulating key TFs, which interact with 
critical transcriptional enhancers [12]. Indeed, several important 
TFs that affect the risk in PCa were reported that include 
androgen receptor (AR), GATA binding protein 2 (GATA2), 
Organic Cation Transporter 1 (Oct1), and Homeobox B13 
(HOXB13) [13].  

The HOXB13 TF is known to play important roles in increased 
risk of prostate cancer [14-17]. Genetic evidences suggested that 
HOXB13 promotes PCa risk with unknown mechanisms [15]. 
Recently, a genetic variant, rs339331, located in the DNA binding 
site of HOXB13 was reported to be associated with the PCa 
susceptibility [18, 19]. Here we describe an integrative 
informatics system for searching regulatory SNPs and their target 
genes associated with TFs, specifically focusing on HOXB13 in 
this study (Figure 1). Owing to high-throughput technologies, 
such as microarrays and next-generation sequencing, we 
integrated publicly available ChIP-seq, RNA-seq, SNP array and 
clinical data for identifying rSNP candidates regulating 
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neighboring gene expression that may be critical for the increase 
of PCa risk. Our approach confirmed the recent discovery of a 
generic variant and identified other rSNP candidates. Finally, we 
carried out an experimental validation for one of the candidate 
rSNPs and confirmed its association with altered gene expression.  

2. METHODS 

2.1 Data sets 
We downloaded RNA-seq, SNP array, and clinical data of 
prostate adenocarcinoma (PRAD) from the TCGA data portal 
(https://tcga-data.nci.nih.gov/tcga/). These data include 497 tumor  
and 52 matched normal samples for RNA-seq, 500 samples for 
SNP array data, and 369 patients’ clinical information from which  
295 patients are eligible for the risk analysis of biochemical 
relapse. ChIP-seq data of the HOXB13 transcription factor were 
downloaded from the European Nucleotide Archive 
(http://www.ebi.ac.uk/ena) under the accession number 
PRJEB4865. 

The RNA-seq raw counts were prepared by removing genes 
whose counts were all zero across patient samples.  Then, the 
counts for a gene in each sample were divided by the geometric 
mean calculated across all samples; the size factors, the median of 
those ratios from each sample, are used for adjusting differences 
in the library sizes of sequencing experiments using the DESeq2 
R package [20]. Then, the normalized count data were log2-
transformed for statistical analysis.  

Affymetrix Genome-wide Human SNP array 6.0 data were 
processed mainly using the corrected robust linear mixture 
model (crlmm) algorithm for data normalization and genotype 
calls. Briefly, crlmm estimates the genotype based on a two-stage 
hierarchical model (M) for the log-ratio of the allele A and B 
intensities IA and IB defined as M = log2 (IA/ IB). The model M is 
grounded in an empirical Bayes approach, in which the means 

conditioned on genotype have a multivariate normal distribution 
while the variances follow an inverse gamma distribution, for the 
posterior probability estimation of each genotype [21]. The final 
data are represented as 0 (AA), 1 (AB), and 2 (BB) [22].  

ChIP-seq reads were mapped to the human genome (hg19) using 
Burrows-Wheeler Alignment (BWA) software [23] and peak 
calling was performed by MACS [24].   

Microarray profiling of LNCaP control cell and HOXB13 
silencing cells was performed using HumanHT-12 v 4.0 
Expression BeadChip (Illumina). Bead-level data were 
preprocessed using GenomeStudio (Illumina), and the expression 
values were quantile-normalized using the beadarray R package 
[25].  
Clinical data were processed to extract relevant variables for the 
risk analysis of biochemical recurrence such as relapsed time and 
status of biochemical recurrence (corresponding to the column 
names of “days to psa” and “biochemical recurrence” in the 
TCGA clinical data file). 

2.2 Computational procedure for Identifying 
regulatory SNP candidates associated with 
disease 
 
Figure 1 shows the computational procedure for identifying 
regulatory SNPs involving in disease risk. We describe each of 
the four steps in details as follows: 

Step 1. The bed format files of ChIIP-seq and SNP array data—in 
total of 36,143 peaks and 905,422 SNPs, respectively—are 
prepared as an input to the OverlapSelect program from the UCSC 
Kent source library. This data integration is based on genomic 
positions that find all the SNPs lying in each of the ChIP-seq 
peaks.   

Step 2. Using the Genome Reference Consortium human genome 
build 37 (GRCh37) downloaded from the Ensembl website 
(http://useast.ensembl.org/Homo_sapiens/), we preprocessed to 
prepare the gene list in a bed format. To search the neighboring 
genes of the chosen SNPs, we used the bedtools program [26] 
with the following command: bedtools window –a snp.bed –b 
gene.bed –w 50000 > output.bed 

Note that we only keep the unique pairs of SNP and neighboring 
genes. 

Step 3. For each of the SNP-gene pairs from Step 2, we extract 
corresponding SNP array and log2-transformed gene expression 
data from the common patient samples (e.g., 494 samples for 
PCa). We then applied the Analysis of Variance (ANOVA) test to 
assess the statistical significance between each SNP genotype and 
its neighboring gene expression. Although ANOVA can handle 
small sample sizes, we set an ad hoc minimum allele frequency of 
20 for each SNP allele, motivated by the HapMap project 
targeting SNPs with a minimum minor allele frequency of 5% 
[27], and paired to log2-transformed expression data.  

Step 4. For the association analysis of gene expression and risk of 
biochemical relapse, we used a collection of 295 RNA-seq tumor 
samples (202 samples excluded from the original 497 samples due 
to the absence of clinical data) and 52 RNA-seq normal samples 
from the TCGA cohort. We transformed the gene expression 
levels to z-score defined as: z-score= x-µ/σ, where x is the tumor 
samples, µ is the mean of normal samples, and σ is the standard 

Figure 1. Computational procedure for identifying risk SNP 
candidates. This process utilizes ChIP-seq, SNP-array, 
RNA-seq and clinical data. 
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deviation of normal samples. Therefore, the scores above and 
below zero indicate higher and lower expression, respectively.  

To stratify the tumors into two groups, high and low gene 
expression, we first classified them into positive and negative z-
scores. We then ranked the tumors based on the z-score in each 
group. Tumors with high and low gene expression are defined as 
those in the highest and lowest 75% of tumors with positive and 
negative z-scores, respectively. Since z-scores close to zero are 
uninformative and thus not useful in this analysis, we excluded 
the corresponding tumor samples accordingly. Lastly, we 
performed Kaplan-Meier analysis using this stratification.  

Similarly, we used a collection of 293 SNP array data whose 
clinical data exist for the association analysis of each SNP allele 
and risk of biochemical relapse followed by Kaplan-Meier 
analysis. 

All these steps are automated and the external programs in Step 1 
and 2 are embedded using the system function in R. In order to 
accelerate the statistical computation, we made use of 8 cores by 
using the two R libraries—foreach and doParallel, taking less than 
15 minutes running on MacBook Pro (2.6 GHz intel Core i7 
processor; 16 GB 1600 MHz DDR3 memory). 

3. RESULTS 

3.1 Identification of rSNP candidates and 
their neighboring genes associated with 
HOXB13 
Majority of the transcription factor binding sites is located in 
intergenic regions, a stretch of DNA sequences outside of protein 
coding genes, largely 20 - 25kb far from the neighboring genes 
[28]. Using the HOXB13 ChIP-seq data, we searched for SNPs 

lying within the potential DNA binding sites of HOXB13 in 
whole genome. We found 1,946 SNPs using the OverlapSelect 
program. We then looked for each SNP’s neighboring genes 
within 100kb (±50kb) that returned 8,168 unique SNP-gene pairs; 
our rationale for setting the range of ±50kb is to inclusively 
searching for all the potential local SNP-gene associations. For 
each SNP-gene pair, we extracted SNP array and log2-
transformed RNA-seq data from the 494 TCGA patient samples 
and compared the differences between three different allele 
groups (two homozygous and one heterozygous) and the gene 
expression level by using the ANOVA test. Note that we excluded 
the SNP-gene pairs from the analysis when the minimum number 
of samples for each allele is less than 20. In this way, the risk 
alleles we find in this study are present in at least ~5% of 
population [27]. We identified 213 SNP-gene pairs that are 
strongly correlated by applying p-value cutoff of 0.05 in which 
102 SNP-gene pairs still remained after applying q-value (FDR) 
cutoff of 0.1 for multiplicity (Figure 2). Notably, our results 
include the recent discovery of the generic variant (rs339331) and 
its targeted gene (RFX6) with p-value of 3.24E-02 [18].   

Recent studies have reported that expression quantitative trait loci 
(eQTL) SNPs may be associated with disease through gene 
regulation [29, 30]. Thus, we searched the 213 SNP-gene pairs for 
finding eQTL signatures from the Genotype-Tissue Expression 
(GTEx) portal (www.gtexportal.org/home/). Table 1 shows the 16 
SNP-gene list reported as eQTL, and several of these genes are 
known to play critical roles in human cancers; for instance, 
UPK3A for bladder cancer [31], MMP16 for melanoma [32] and 
lung cancer [33], AGR3 for ovarian cancer [34], and RalB in 
multiple cancers [35]. This implicates that the SNP-genes pairs 
including eQTL SNPs may serve as potential biomarkers in PCa.  

      Table 1. 16 SNP-gene list from the PCa data analysis reported as eQTL in other studies.  

 
SNP ID 

 
Gene 

symbol 

 
P-value 

 
Allele 

A 

 
Allele 

B 

Allele frequency Mean of normalized count 

AA AB BB AA AB BB 

rs2742624 UPK3A 2.90E-46 A G 63 202 229 2894.1 2220.5 786.8 

rs2412106 CHURC1 7.95E-17 A G 193 212 89 2170.1 2530.2 2768.8 

rs1045270 WDYHV1 2.07E-13 A G 210 218 66 722.6 579.8 514.8 

rs3825393 KCTD10 2.51E-11 C T 248 186 60 3321.6 3801.5 4391.2 

rs6799720 PLOD2 1.21E-10 G T 121 247 126 841.7 1257.3 1427.3 

rs11689112 RALB 1.68E-10 A C 244 202 48 4014.2 3536.1 2920.9 

rs185397 GOT2 3.08E-10 A G 65 182 247 7196.4 9322.1 7366.0 

rs4325349 KRT86 4.42E-06 C G 58 218 218 25.2 18.4 11.5 

rs7894521 ECHDC3 2.61E-05 G T 92 106 296 563.5 844.9 944.4 

rs3746337 PYGB 3.45E-05 C T 169 218 107 20172.3 18992.3 16455.2 

rs10100297 MMP16 3.38E-04 C T 97 211 186 50.2 45.2 35.8 

rs3897474 GPR180 1.00E-03 A G 200 204 90 582.1 554.1 508.8 

rs11489585 RSBN1L 1.71E-03 A G 271 187 36 698.7 778.8 836.3 

rs2283119 ASAH1 8.46E-03 G T 151 194 149 11760.6 12907.2 11621.8 

rs3821747 RPL22L1 9.57E-03 A G 315 150 29 2279.2 2896.0 2747.7 

rs847377 AGR3 1.83E-02 C T 202 231 61 362.3 429.0 487.6 

 
 



3.2 rSNP candidates within DNA sequence 
matched to the HOXB13 binding motif  
Among the set of SNP-gene pairs, we found that three SNPs are 
located in the canonical HOXB13 binding motif (Table 2 and 
Figure 3). However, we noticed that the statistical significance for 
rs447003_KRT6A and rs4796539_MED31 is mainly due to the 
expression difference between homozygous and heterozygous, but 
not between reference (AA) and alternative (BB) allele. Only the 
rs339331_RFX6 pair is differentially expressed between reference 
(AA) and alternative (BB) allele; the reference allele T serves as 
part of the HOXB13 binding motif whereas its alternative allele 
disrupts HOXB13 DNA binding that decreases the RFX6 
expression level by ~5-fold. Indeed, Huang et al recently 
demonstrated that the rs339331 SNP involves in prostate cancer 
risk by altering the RFX6 gene expression through an interaction 
with HOXB13 [18].  

3.3 Association between SNP, gene and 
prostate cancer risk 
 To evaluate whether a single generic variant is closely linked to 
PCa risk by affecting gene expression programs, we performed a 
statistical analysis to find SNP-gene pair associated with the risk 
of biochemical relapse based on the log-rank test. We observed 
that 16 SNPs and 50 genes are highly correlated with the PCa risk 
from which three SNP-gene pairs are in common (Figure 2 and 
Table 3). Although not much is known about the three candidates 

in relation to HOXB13, we found through a literature search that 
the AURKB gene has been actively investigated in the PCa 
community to decipher its functional role [36-38]. In fact, 
AURKB is proven to be associated with other diseases such as 
glioblastoma [39]. Thus, we investigated further the gene by 
comparing allele-specific expression level of two homozygous 
alleles. Indeed, Figure 4A shows that significant expression 
differences were observed between reference and alternative allele 
(p= 2.937E-03, Student’s t-test) whereas insignificant expression 
differences between homozygous and heterogynous alleles were 
observed. Next, we evaluated whether AURKB is associated with 
the clinical variables that would indicate PCa progression. Using 
Kaplan-Meier with the log-rank test, we found that 
rs1476161_AURKB are highly correlated with the risk 
biochemical recurrence (Figure 4B-C). Figure 4B shows the 
reference allele A involved with a notable increase in the 
frequency of biochemical relapse than the alternative allele G 

150

3

SNP-Gene pair (p < 0.05) SNP_BCR-free survival (p < 0.1)

Gene expression_BCR-free survival (p < 0.1)

13

47

0

0

0 78

1

SNP-Gene pair (FDR < 0.1) SNP_BCR-free survival (p < 0.1)

Gene expression_BCR-free survival (p < 0.1)

9

14

0

0

0

A B

 
Figure 2. Association between SNP, gene expression and risk of prostate cancer. (A) 213 SNPs are significantly associated with 
their nearby genes (p-value <0.05; ANOVA) in which 16 SNPs and 50 genes are correlated with biochemical recurrence (BCR) (p-
value < 0.1; log-rank test) and 3 are in common. (B) For multiple comparisons, we used q-value cutoff of 0.1 for the association of 
SNP and its neighboring gene pair that returned 102 SNPs from which 10 SNPs and 15 genes are correlated to biochemical 
recurrence, and found 1 in common.  
 
 

 

 

Figure 3. HOXB13 sequence logo (A) and the list of DNA 
binding motifs (B). 

Table 2. SNP candidates and the neighboring target genes whose sequence contains the canonical HOXB13 DNA-binding motif.  

 
SNP ID 

 
Gene 

symbol 

 
Gene name 

 
P-value 

 
Allele 

A 

 
Allele 

B 

 
Allele frequency 

Mean of normalized 
count 

AA AB BB AA AB BB 

rs447003 KRT6A Keratin 6A 4.51E-03 C T 60 235 199 90.4 143.9 102.0 

rs4796539 MED31 
Mediator Complex 
Subunit 31 1.04E-02 A G 89 206 199 289.8 311.1 294.5 

rs339331 RFX6 Regulatory Factor X, 6 3.24E-02 T C 263 186 45 116.6 69.6 22.6 
 



(P=1.14E-02). Note that the allele frequencies between the two 
alleles are not much different (A: 56.290% (2819 / 5008); G: 
43.710% (2189 / 5008)) according to the samples submitted to 
dbSNP [40]. In addition, Figure 4C represents that higher 
AURKB expression is correlated with the elevated rate of 
biochemical relapse occurrence. 

3.4 The rs1476161_AURKB pair potentially 
regulated by HOXB13 
Despite the absence of the HOXB13 binding motif in AURKB, 
we hypothesized that the gene may still be regulated by HOXB13 
through, for example, multiple transcription factor binding. Thus, 
we investigated whether rs1476161 can affect the AURKB 
expression in relation to HOXB13.  We first knocked down 
HOXB13 by short hairpin RNA (shRNA) and then examined the 
change of AURKB expression level. Interestingly, we observed 
that the expression level of AURKB was decreased by about 2-
fold in HOXB13-silencing cells compared to the control cells 
(Figure 5), indicating the involvement of HOXB13 in the AURKB 
gene expression. We envision a potential molecular mechanism 
that HOXB13 regulates other transcription factors such as 
androgen receptor that bind to this locus [41]. Further 

experimental investigation can delineate the detailed mechanisms 
of how transcription factors contribute for regulating AURKB 
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Figure 5. Knockout of HOXB13 diminishes AURKB 
gene expression level. LNCaP-pGIPZ and LNCaP-
shHOXB13 are the control and HOXB13 repressed cell, 
respectively. 

Table 3. List of SNP candidates and their neighboring target genes significantly correlated among SNP, gene expression and risk 
of prostate cancer (BCR). 

SNP ID Gene symbol Gene name p-value 

SNP-Gene Gene-BCR SNP-BCR 

rs7992643 CLYBL Citrate Lyase Beta Like 2.20E-08 6.54E-02 5.68E-02 

rs12938215 DUSP14 Dual Specificity Phosphatase 14 1.47E-02 6.18E-02 5.71E-04 

rs1476161 AURKB Aurora Kinase B 2.33E-02 5.18E-02 1.13E-02 
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Figure 4. Association between rs1476161 genotype, AURKB expression and PCa risk. (A) Allele-specific gene expression. The 
overall distribution of normalized AURKB read counts for the AA (83 samples) genotype is higher than the AG (115 samples) and 
GG (95 samples) genotypes. In particular, significant difference between AA and GG was observed with p-value of 2.937E-03 
(Student’s t-test). (B) Kaplan-Meier plot for evaluating the risk of biochemical recurrence with respect to each genotype.  GG 
genotype is the risk allele for the PCa progression whereas AA genotype depicts the PCa progression-free. (C) Kaplan-Meier plot 
for analyzing the risk of biochemical recurrence based on AURKB expression. Higher (top 75% of AURKB-upregulated samples) 
and lower expression (bottom 75% of AURKB-–downregulated expression) illustrates that the high PCa risk is with lower 
AURKB expression level whereas gradual decrease of PCa risk is with higher AURKB expression.  
 
 
 



expression in PCa risk. 

4. CONCLUSION AND DISCUSSION 
We presents an in silico methodology in conjunction with an 
experimental validation for identifying rSNPs located in the TF-
bound noncoding regions. These rSNPs affect the TF binding 
affinities to DNA that in turn alter gene expression associated 
with increasing the risk of disease. Specifically, we focused on 
HOXB13, one of the important TFs for PCa progression and 
development. By integrating various high-throughput sequencing 
data such as ChIP-seq, RNA-seq and SNP array along with 
clinical data, we identified 213 rSNP candidates that are highly 
correlated with neighboring gene’s expression level. Some of 
these were reported as eQTL in previously published studies and 
as biomarkers in human cancers (Table 1). Notably, one of the top 
rSNP candidates located in the HOXB13 binding motif along its 
target gene was recently confirmed as PCa risk allele [18]. In 
addition, we identified a novel rSNP and its target gene pair 
candidate (rs1476161, AURKB) that was further confirmed by in 
vitro validation; this would be a potential biomarker in PCa. Put 
together, our approach is feasible in identifying rSNPs and their 
target genes in diseases.  

AURKB is known to play critical roles in human cancers and has 
been of great interest in the PCa community for elucidating its 
functional role in the disease. Figure 4 shows that AURKB 
mRNA level is higher with the reference allele AA of rs1476161 
in the patient samples than the alternative allele GG. The risk 
prediction based on BCR illustrates that AA is the risk allele 
associated with an increased PCa development. This is coherent 
with the gene expression-based risk analysis demonstrating higher 
risk of PCa with the overexpression of AURKB. Indeed, similar 
observation in other human cancers has been reported, for 
example, in primary non-small cell lung carcinoma [42], acute 

myeloid leukemia [43], and thyroid carcinoma [44]. Thus, we 
speculate rs1476161 as the risk allele for causing increased 
AURKB expression.   

Although our experimental data supports the involvement of 
HOXB13 in altering AURKB mRNA level, it is not possible to 
rule out other potential cofactors (e.g., AR, FOXA1, GATA2). 
Previous studies uncovered that FOXA1 directly regulates 
HOXB13 [45] and AR-binding to target genes [46, 47]. Thus, we 
performed additional simulations with FOXA1, AR and GATA2 
ChIP-seq data, respectively. Interestingly, we recovered the 
rs1476161 and AURKB pair (P=2.3E-02) present only in the 
outcome of FOXA1. Although high expression of AURKB can 
cause genomic instability due to tetraplodidy [48, 49], TF-
dependent overexpression of the gene leading to tumorigenesis 
remains unknown. We envision rs1476161 affecting at least 
HOXB13 and FOXA1 binding that eventually alters the AURKB 
expression.  

While TCGA offers unprecedented opportunity for integrative 
analyses of multiple –omics datasets, some limitations still exist, 
particularly for the lack of independent validation dataset. This 
may create a potential bias in the computational predictions. In the 
future studies, we plan to focus on validating the findings in the 
independent PCa datasets [50] that will strengthen the in silico 
predictions and minimize the number of false positive predictions.           
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