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ABSTRACT

Motivation: Most computational methodologies for miRNA:mRNA

target gene prediction use the seed segment of the miRNA and

require cross-species sequence conservation in this region of the

mRNA target. Methods that do not rely on conservation generate

numbers of predictions, which are too large to validate. We describe

a target prediction method (NBmiRTar) that does not require

sequence conservation, using instead, machine learning by a naı̈ve

Bayes classifier. It generates a model from sequence and

miRNA:mRNA duplex information from validated targets

and artificially generated negative examples. Both the ‘seed’ and

‘out-seed’ segments of the miRNA:mRNA duplex are used for target

identification.

Results: The application of machine-learning techniques to the

features we have used is a useful and general approach for

microRNA target gene prediction. Our technique produces fewer

false positive predictions and fewer target candidates to be tested.

It exhibits higher sensitivity and specificity than algorithms that

rely on conserved genomic regions to decrease false positive

predictions.

Availability: The NBmiRTar program is available at http://wotan.

wistar.upenn.edu/NBmiRTar/

Contact: yousef@wistar.org

Supplementary information: http://wotan.wistar.upenn.edu/

NBmiRTar/

1 INTRODUCTION

MicroRNAs (miRNAs) are short (�22 nt) RNA molecules that

either mark their target mRNAs for degradation or suppress

their translation by binding to the 30-untranslated region

(30UTR). Previous studies have suggested that the miRNA

seed segment (Fig. 1) that includes 6–8 nt at the 50 end of the

mature miRNA sequence is very important in the selection of

the target site. Thus most of the computational tools developed

to identify mRNA target sequences depend heavily on the

complementarity with the ‘seed’ sequence in the target.

However, Brennecke et al. (2005) have recently suggested that

the 30 out-seed segment of the miRNA:mRNA duplex sequence

can compensate for imperfect base pairing within the seed

segment. To our knowledge, only one recent computational

approach (Yan et al., 2007) has considered the contributions of

the out-seed miRNA segment in target identification.
Several methods for the prediction of miRNA targets have

emerged recently. These methods mainly use sequence com-

plementarity, thermodynamic stability calculations and evolu-

tionary conservation among species to determine the likelihood

of a productive miRNA:mRNA duplex formation (Bartel,

2004; Lai, 2004). Using sequence conservation reduces false

positive predictions but some less-conserved target sites may be

missed. The dilemma that is posed is how to avoid rejection of

less highly conserved target sites while reducing the very large

numbers of predictions that will be found when seed region

conservation in the target is not required.
In order to reduce the false positive predictions inherent in

methods that heavily weight specific target sequence conserva-

tion, Lewis et al. (2005) developed TargetScanS. TargetScanS

scores target sites based on the conservation of the target

sequences between five genomes (human, mouse, rat, dog and

chicken). SaeTrom et al. (2005) have developed TargetBoost,

a machine-learning algorithm for miRNA target prediction

using only sequence information to create weighted sequence

motifs that capture the binding characteristics between

miRNAs and their targets. The authors suggest that

TargetBoost is stable and identifies more of the already verified

true targets than do other existing algorithms.

Sung-Kyu et al. (2005), have reported the development of an

algorithm using SVM with a RBF kernel, an approach with

some similarities to the one we describe here. Our approach

differs mainly from that of Sung-Kyu et al. in that it includes

the contributions of a number of additional features we feel are

important for more accurate target prediction. In addition,

while artificial and random negative classes are generated by

both approaches, the negative class we have generated for the

current study differs from theirs. The best reported results of

Sung-Kyu et al. (2005) were 0.921 as sensitivity and 0.833 as

specificity. More recent work reported by Yan et al. (2007), also

using a machine-learning approach, employs features extracted

from the seed and out-seed segments. However, these features

are different from those we have used in NBmiRTar. The best
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results that were obtained by Yan et al. (2007) using an

optimized ensemble classifier has an accuracy of 82.95%. The

results were generated using only 48 positive human and 16

negative examples, a relatively small training set.
Recently Thadani and Tammi (2006) launched MicroTar, a

statistical computational tool for prediction of miRNA targets
from RNA duplexes, which does not use homology for

prediction. MicroTar mainly relies on a quite novel approach

to estimate the duplex energy. However, the reported sensitivity

(60%) is significantly lower than the sensitivity achieved using
other published algorithms.

Sethupathy et al. (2006b) conducted a survey and a

comparison of the five most used tools for mammalian target
prediction and indicated that 30% of the experimentally

validated target sites are non-conserved, supporting the need

for the development of different computational approaches to

capture these target sites. Rajewsky (2006) in a similar review
discusses the importance of selecting the so-called control set,

which we refer to is as the negative class in our terminology and

an issue we have attempted to address. Lai (2004) in an

additional review noted that there is almost no overlap among
the predicted targets identified by the various methods and

suggests that each tool captures a subset of the entire target

class as a function of the specific features they have

incorporated into their prediction models. Furthermore, the
large number of predictions that each of these tools is

producing suggests that the heavy reliance on homology or

comparative sequence analysis is not sufficient to generate

accurate predictions with a high sensitivity.
We present here, a machine-learning approach for predicting

miRNA target site based on the naı̈ve Bayes (NB) classifier.
In our approach, we include features extracted from both the

seed and ‘out seed’ sequences, the duplex structures and a

number of additional sequence features. We believe that the

inclusion of these features (enumerated below) contributes
significantly to improving the performance of the NBmiRTar

classifier. We also suggest that the negative class we have

generated for training is more appropriate than those generated

for previous studies. One direct use of our classifier is as a filter
for the output of the miRanda tool (Enright et al., 2003; John

et al., 2004). We demonstrate that this filtering step decreases

the false positive prediction by miRanda significantly. The

NBmiRTar algorithm demonstrates both high specificity,
and a high sensitivity.

2 MATERIALS AND METHODS

2.1 Data

A collection of 225 confirmed miRNA targets (human, mouse, fruit fly

worm and zebrafish) and 38 confirmed false target predictions were

downloaded from the TarBase (Sethupathy et al., 2006a) web site to

serve as positive and negative examples, respectively, for training

the classifier. We will refer to this negative set as NEG_0. Since we

anticipated that the current set of 38 confirmed negative examples

would not be sufficient for the learning algorithm to function efficiently

(see Supplementary Material Table A), additional artificial negative

examples were generated as described below.

2.2 Generation of the artificial negative examples

We used the 3000 artificial mature miRNA (all 30 nt long) from

SaeTrom et al. (2005) to generate an artificial negative class. These

artificial mature miRNA consist of a random string of nucleosides

appearing with frequencies of A, C, G and U with a probability of 0.34,

0.19, 0.18 and 0.29, respectively, that are not consistent with the

base frequencies in true miRNAs. MiRanda was then used to generate

target predictions for the 3000 artificial MiRNAs from the 29 785

human 30UTR sequences in MiRanda. All these target results are

assumed to be false positive predictions since the query search did not

include true miRNAs. The minimum free energy (MFE) and the

miRanda score threshold (SC) are two important parameters that one

can set to increase the stringency of the predictions and thus decrease

the selection of weaker false positive predictions (Hsu et al., 2006).

In this case, the artificial negative set was produced by setting the

MFE at 25 kcal/mol and SC at 180, which are both stringent values.

However, using all 3000 artificial negative examples yielded a large and

unmanageable set of predictions. One hundred negative examples were

then chosen at random from the 3000 and used to re-query miRanda.

MiRanda now produced 133 316 false targets to form the pool of

negative examples we have used. We refer to this pool as NEG_1.

2.3 Designing duplex structure and sequence features

Most studies agree that the seed segment is the most important factor in

target selection anticipating a perfect or near perfect binding between

the mature miRNA and its target. In most cases, the out-seed (30)

segment of the miRNA is not considered to influence target binding.

However, an important early observation by Vella et al. (2004)

indicated that the out-seed segment including various bulges can also

have an important role in the miRNA–target interaction. It appears

that a compensatory relation between the two segments exists

(Brennecke et al., 2005) so that a poorer homology between the

miRNA and target seed regions can be compensated for by a stronger

interaction in the out-seed. They also showed that out-seed with

complementarity, is alone not sufficient to make a functional duplex;

some contribution from the seed is required. The observations of Vella

et al. (2004) as well as more recent studies of Brennecke et al. (2005)

and Grimson et al. (2007) support the importance of the ‘out-seed’

region in target identification. The data and conclusions reported in

these two papers have contributed to the feature design that we have

used in this study, which includes both seed and out-seed regions of the

miRNA sequence. Our features are chosen on the following assump-

tions: (1) The complementarity of 7–8 bases in the seed region are

sufficient for good duplex formation. (2) A seed segment with weak

complementarity can be compensated for by the out-seed sequence

(30 end of the miRNA) to make a functional duplex. (3) Good

complementarity in the out-seed region alone is not sufficient for

functional duplex formation.

To date there is no computational tool that builds a model capable of

capturing even all known validated targets so the identification of new

targets is problematic. We use machine learning based on miRNA

features. Machine learning enables one to generate automatic rules

based on observation of the appropriate examples by the learning

machine. However, the selection and design of the features that will be

considered in the learning process are very important and the

parameters that distinguish the positive from negative classes need to

3’ uagcgccaaauauggUUUACUUA 5’ has-miR-579

5’ atttctttttatggaAAATGAGT 3’ LR1G3
out-seed  seed

Fig. 1. Duplex partitioned into two parts, the seed and the out-seed,

for miRNA hsa-miR-579 and its target LRIG3. The seed part is shown

in capital letters.
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be carefully chosen. For example, if only features of the seed segment

are considered then the learning machine will not be able to model cases

where the target sites include a compensatory out-seed contribution.

Consequently, we have partitioned the duplex into two parts, the seed

(50 8 nt of the miRNA) and out-seed (30 remainder) as described in

Figure 1. For each of these parts the following features are extracted to

give 57 structural features: (1) The number of paired bases (bp), (2) The

number of bulges (inserts on one strand between paired bases), (3) The

number of loops (unpaired bases opposite each other between paired

bases), (4) The number of asymmetric loops (loops with unequal

numbers of unpaired bases on the two strands), (5) Eight features, each

representing the number of bulges of lengths 1–7 and those with lengths

greater than 7, (6) Eight features, each representing the number of

symmetric loops with lengths 1–7 and those with lengths47, (7) Eight

features each representing the number of asymmetric loops with lengths

1–7 and those with lengths47 and (8) The distance from the start of the

seed (the 30 end) to the first paired base of the 50 start of the out-seed

part is an additional feature that is extracted. In addition, nucleotide

sequence ‘words’ with lengths 4, 5, 6, 7, 8, 9 are extracted from the seed

sequence. These ‘motif’ features are not fixed in number and influence

the dimension of the vector space. Although no more than 15 unique

words come from any one seed, each miRNA contributes a different set

of words that depends on its sequence. The dimension of the feature

vector is determined, at a later point, to be 57 plus the number of

unique ‘words’ that are obtained. A similar method of feature extraction

was successful for predicting miRNA genes (Yousef et al., 2006).

2.4 NBmiRTar schema

The NBmiRTar tool is illustrated in Figure 2. The filters applied to the

predictions before and after the data is processed through the NB

classifier are listed to the right of the diagram. The main diagram shows

that the NB classifier reprocesses the miRanda output using the features

we have described to revise and rescore the prediction. The filtering

layers are applied to further restrict and reduce the predictions.

The parts of the schema are described below.

2.5 Naı̈ve Bayes classifier

Naı̈ve Bayes is a classification model obtained by applying a relatively

simple method to a training dataset (Mitchell, 1997). A NB classifier

calculates the probability that a given instance (example) belongs

to a certain class. It makes the simplifying assumption that the

features constituting the instance are conditionally independent

given the class. Given an example X, described by its feature vector

(x1,. . .,xn), we are looking for a class C that maximizes the likelihood:

PðXjCÞ ¼ Pðx1, . . . ,xnjCÞ. The (naı̈ve) assumption of conditional

independence among the features, given the class, allows us to express

this conditional probability P(X|C) as a product of simpler probabil-

ities: PðXjCÞ ¼
Qn

i¼1 PðxijCÞ.

We used the Rainbow program (McCallum, 1996) to train the

NB classifier. To combine the numeric features identified in the

miRNA–target duplex with the sequence features (‘words’) in the target

candidate sequence, a dictionary of all the unique ‘words’ was generated

and the frequency of each ‘word’ in the sequence is used.

2.6 MiRanda and energy scores filters

As shown in Figure 2, the NB classifier is applied to the output of the

miRanda program (John et al., 2004). MiRanda associates to each

prediction, a score that describes the maximal local complementarity

alignments. For each single-residue-matched pair a specific score is

given, for example, þ5 for G:C and A:T pairs and þ2 for G:U wobble

pairs. The final miRanda score is computed as the sum of the single-

residue-pair match scores over the duplex structure. The MFE of the

duplex is determined using the Vienna package (Hofacker, 2003).

We have required that only the miRanda predictions with MFE

�12 kcal/mol will be used by the NB classifier for further classification

and scoring. We have also chosen 90 as the miRanda score filter to be

applied to the output of the NB classifier. For further discussion and

information about the miRanda score and the MFE, see Hsu (2006).

2.7 Naı̈ve Bayes score filter

We have found that our NB classifier has high accuracy (high sensitivity

and specificity) at finding known miRNA:mRNA target genes.

However, we were interested in further reducing the number of false

positive predictions, since the data to be examined at this point could

include very large numbers of examples. Even with a small percentage

of false positives, tens of thousands of predictions could be generated,

making it difficult to validate these predictions in the laboratory.

Thus, further analysis was applied to determine the appropriate

threshold for further eliminating false positive predictions. The NB

classifier assigns a score to each miRNA: mRNA candidate and

classifies it into one of the two predefined classes: the positive class

(target) and the negative class (non-target). Figure 3a shows the

distribution of the classifier’s scores for the true positive (TP) and the

false positive (FP) predictions. A threshold of 0.9 reduces the false

predictions by �64% while only losing 4.5% of the true miRNA target

when applied to the output of the classifier. A stricter threshold might

be chosen to further reduce the number of predictions.

3 RESULTS

3.1 Training and evaluation of performance

We trained the classifier by multiple rounds of 10-fold cross-

validation. In each round, a randomly selected 90% of each

class was used for training and the remaining samples tested to

determine accuracy. This was repeated 100 times and the

average fraction of true positive (sensitivity) and true negative

(specificity) predictions were determined.
To estimate classification performance, we have evaluated

the accuracy of NBmiRTar in identifying the 38 validated

negative examples (NEG_0) and the artificial negative class

3’UTR3’UTR microRNAs

miRanda

Naïve Bayes
classifier

Predicted 

microRNA targets

Miranda score

NB scoreNB score

Folding energy

Filters:

Fig. 2. The computational procedure for implementing NBmiRTar tool

for miRNA target prediction.
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(NEG_1) generated from miRanda. Our primary focus was to

build a classifier with as high specificity as possible in target

identification in order to reduce the false positive miRNA

target predictions to levels that would be amenable to

laboratory validation procedures.

3.2 Results for the artificial negative (NEG_1)

Results from cross-validation during training using NEG_0

are about 0.93 as sensitivity and 0.7 as specificity (see

Supplementary Material). It is clear that the current set of 38

validated negative examples is not large enough to represent the

negative class as we had anticipated, and therefore more

negative data is required.
We then used the NB classifier with the 133 316 negative

examples (NEG_1) generated as described in the Methods

section. The NB classifier was trained multiple times. In each

training epoch, a set of 200 known mRNA:miRNAs (90% of

the positive data) was randomly selected from the 225 and used

as positive examples. We varied the number of negative

examples from the NEG_1 dataset across different sets of

experiments, randomly choosing a set of 50, 100, 150, 200, 250,

300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000 or 5000

from the pool of 133, 316 negative examples and training

on 90% of this set. The testing was performed with the

remaining 10% from the positive class and the remaining

NEG_1 examples from the selected set. This evaluation

procedure was repeated 100 times. The results are shown in

Figure 3b. For example, using 900 negative examples yields

0.99 as specificity and 0.94 as sensitivity.

3.3 Significant features

We analyzed the most significant features (Table 1) with highest

average mutual information (MI, Shannon and Weaver, 1949)

in order to better understand the miRNA:mRNA interactions.

We used the 900 negative example training set as a compromise

between sensitivity and specificity (Fig. 3b). Each class

(positive or negative) has its own significant features that

consist of the 57 duplex structure features plus the unique

‘words’ generated as sequence features: 11 987 from the 225

positive examples and 143 134 from the 900 negative examples.

Since, the negative class was selected from the false positive

target predictions from miRanda, the features that define the

negative class share some similarities with the features that

define the positive class. The most informative features

distinguish between the two classes as differences in the mean

values for each of the features. For instance the relative values

for features number 1 and 2 suggest that the positive class

includes more bulges of 1 nt length in the seed part than the

negative class (mean of 0.35 versus 0.003), while based on

features number 4, 14 and 16 it would be concluded that the

number of bulges in the out-seeds of the negative class is more

than for the positive class. Based on features 5, 8 and 10, the

positive class has more asymmetric loops in its out-seed

segment than the negative class. Based on features 3 and 27,

the positive class has fewer symmetric loops in the out-seed

than the negative class.

3.4 Results with human known targets

We compared the number of target predictions generated by

miRanda, the NB classifier and the NB classifier with the

NB-filter when tested for their ability to capture 13 verified

human targets for the 10 known miRNAs. The 30UTR human

dataset was downloaded from miRanda along with the

sequences for each of 10 miRNA to serve as the input to

NBmiRTar tool. The results for each individual miRNA and

the number of predictions generated by each tool are shown in

Table 2. The record of recovery of the true target for each input

miRNA is shown for each of the three tool analyses. The

accuracy of the whole test is calculated based on the recovery of

the specific correct targets.
The NBmiRTar tool has a reduction of 75% [1� (834 082/

3 331 410)] of miRanda predictions with a recovery rate of 77%
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Fig. 3. (a) Distribution of Naive Bayes scores over the miRNA target class and the negative class. This figure shows the distribution of the NBSs for

the true positive (fraction TP) and the false positive (fraction FP) rates. (b) Accuracy of prediction as a function of size of negative class. Sensitivity is

the true positive (number called positive divided by number of positive examples and specificity is the true negatives (number called negative divided

by number of negative examples).
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(10/13) of the confirmed targets and that the same recovery rate

is obtained when the NB-filter is applied (threshold 0.9) but

with a further reduction in the miRanda prediction to 81%.

The output from the NB-filter of 620 757 predictions obtained

from the 10 miRNAs gives an average of about two target sites

per miRNA in each 30UTR.

We also ran the same test with a single human miRNA,

mir-15. In this case, miRanda produced 88 376 predictions that

we subsequently reduced to 3479 predictions after applying the

NB-filter and miRanda Score-filter. This is 4% of the original

predictions from miRanda

4 DISCUSSION

Most of the existing tools for miRNA predict very large

numbers of miRNA target predictions making biological

validation very difficult. Although those that do use conserved
sequence features produce smaller numbers of predictions, they
have the disadvantage of being able to only predict targets sites

with highly conserved sequences. We have described a machine-
learning approach to miRNA target prediction that does not
rely on conservation and is still able to significantly reduce the

number of target predictions while retaining an acceptable
sensitivity. The ability of NBmiRTar to maintain the levels of
sensitivity we have demonstrated suggests: (1) The extracted

features we have used have captured important features that
define the miRNA:Target class requiring contributions from
both the seed and the out-seed segments, (2) The negative class

that we selected from the miRanda output for 3000 artificial
non-miRNAs appears to accurately represent the negative
class.

Although we have considerably reduced the number of target
predictions while retaining sensitivity, there is room for
significant improvement. One possible way to accomplish a

further reduction in prediction numbers is to use the approach
we have applied here in developing new tools that can be used
in tandem with available tools such as miRanda, PicTar, etc. to

rescore and or re-filter the predictions.
Choosing an appropriate negative class for training a

classifier to recognize miRNA targets is necessarily arbitrary.

We used the negative class described by SaeTrom et al. (2005)
that consists of random nucleotides with frequencies not
consistent with true miRNA. An alternative negative class

could use 22mers selected at random from the human genome.
When we compared targets predicted from such a class to a
comparable number of human miRNA, target predictions, the

results were similar to those in Figure 3a. The predictions of
NBmiRTar were four times as many targets predicted for the
real human miRNA as the random sequences (23 versus 5.8).

Applying the NB-filter with cutoff 0.99, the ratio of predictions
from real miRNAs to random sequences was 16:1.8. We
conclude that the ability of NBmiRTar to identify targets is not

strongly dependent on the exact definition of the negative target
class since two different negative classes we have tried give
similar results.

A recent study conducted by Yan et al. (2007) proposed a
similar technique to the one we have reported with best-
reported accuracy of 83% as compared to our accuracy of

94%. These results were generated using only 48 positive
(human) and 16 negative examples and the specificity of the
performance is not reported.

It is not well understood how miRNAs recognize and
regulate their target genes. The extraction of features in our
current study attempts to include the less obvious elements of

the interaction between the miRNA and its target by
considering every structural feature that may be considered in
the formation of the duplex as well as the sequence features.

It is interesting that the two most important features dictate
imperfect matches in the seed sequence. This might allow
flexibility for a single miRNA to have multiple targets.
In the present model, miRanda predictions serve as the

input to NBmiRTar but certainly output predictions from other
tools could also be used. We selected the miRanda output as
input for the present studies because of its high success

rate in identifying validated targets (Chen et al., 2005;

Table 1. The top 30 significant features obtained by MI

Positive Negative

Feature name Mean Mean

1 Number of bulges in seed 0.35 0.004

2 Number of bulges in seed with length 1 0.328 0.0035

3 Number of symmetric loops in out-

seed with length 1

1.186 2.718

4 Number of bulges in out-seed 0.764 1.655

5 Number of asymmetric loops in out-

seed with length greater than 7

0.15 0.0095

6 Acucca 0.0755 0

7 Acuc 0.128 0.0085

8 Number of asymmetric loops in seed 0.0711 0

9 Acucc 0.111 0.006

10 Number of asymmetric loops in out-

seed

1.04 0.4835

11 Accuu 0.084 0.002

12 Gcuuu 0.057 0

13 Gcuuua 0.057 0

14 Number of bulges in out-seed with

length 1

0.413 0.7955

15 Acuccau 0.053 0

16 Number of bulges in out-seed with

length 2

0.115 0.401

17 Accu 0.088 0.0065

18 Uguga 0.048 0

19 Ugugau 0.048 0

20 Cucca 0.048 0

21 Accuuc 0.048 0

22 Gcuu 0.057 0.001

23 Cagg 0 0.106

24 Caggg 0 0.103

25 Acauucc 0.044 0

26 Cagggc 0 0.1025

27 Number of symmetric loops in out-

seed with length 2

0.457 0.8665

28 Acau 0.048 0.0005

29 Acauu 0.048 0.0005

30 Accuucu 0.04 0

The mean value of each feature across the positive and negative class examples

are listed in the columns at the left.
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Enright et al., 2003; John et al., 2004; Leaman et al., 2005).
In addition, the availability of the source code allowed us to
embed it into our computational procedure. We expect as more
validated target predictions emerge and the number of positive

examples increases, the accuracy of our predictions will also
increase. As suggested by Brennecke et al. (2005), the class of
the interactions of miRNA:mRNA could be assigned to

different families based on different rules that might be applied
for the interactions.
We have launched a web-server (v1.0 Beta) (available at

http://wotan.wistar.upenn.edu/NBmiRTar/) that allows the
user to obtain his prediction by inputting the miRNA(s) and
30UTR sequences with option of applying any of the three
filters (miRanda score filter, folding free energy and Naive

Bayes score filter) we have described in the Methods section.
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Table 2. Predicted human miRNAs targets by miRanda and NBmiRTar

miRNA Number

of confirmed

targets

MiRanda

predictions

Recovery

by miRanda

NBmiRTar Recovery

by NBmiRTar

NB-filter 0.9

1 1 401 592 1/1 87 843 0/1 60 108

2 2 64 984 2/2 34 380 2/2 27 239

3 2 321 312 2/2 80 632 2/2 60 967

4 2 49 556 2/2 24 090 1/2 19 013

5 1 563 477 1/1 259 423 1/1 202 339

6 1 294 255 1/1 84 153 1 61 725

7 1 596 411 1/1 92 337 1 62 118

8 1 381 933 1/1 54 636 0 34 138

9 1 329 770 1/1 42 736 1 45 447

10 1 328 120 1/1 73 852 1 47 663

Sum 13 3 331 410 13 834 082 10 620 757

The last column represents the number of predictions when the NB-filter with 0.9 threshold is used.
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